

Fuzzy Programming for Parallel Machines Scheduling: Minimizing
Weighted Tardiness/Earliness and Flow time through Genetic Algorithm

Mohammad Asgharia,*, Samaneh Nezhadalib

a MSc, Department of industrial engineering, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Iran
b MSc, Department of management, Iran Chamber of Commerce, Industries and Mines, Mashhad, Iran

Received 2 June, 2013; Revised 20 February, 2014; Accepted 08 March, 2014

Abstract

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager
encounters; this is why in recent decades extensive researches have been done on scheduling issues. A type of scheduling problems is just-
in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for appraising a
multi-objective programing that minimize total weighted tardiness, earliness and total flow time with fuzzy parameters on parallel
machines, simultaneously with respect to the impact of machine deterioration. Besides, in this paper, attempts are made to present a
defuzzification approach and a heuristic method based genetic algorithm (GA) to solve the proposed model. Finally, several dominance
properties of optimal solutions are demonstrated in comparison with the results of a state-of-the-art commercial solver and the simulated
annealing method that is followed by illustrating some instances for indicating validity and efficiency of the method.
Keywords: Mathematical optimization, Fuzzy multi-objective model, Parallel machines scheduling, Weighted tardiness/earliness, Genetic
algorithm.

1. Introduction

In classical scheduling problems, the processing time
of job has been assumed constant. However, there are
many situations that this time may be subject to change
due to deterioration and/or learning phenomena (McKay
et al. 2002).

Scheduling with costs of earliness and tardiness has
received considerable and increasing attention in recent
researches. In many practical situations, it is required to
guarantee that as many jobs as possible to meet their due
dates (i.e., to minimize the number of tardy jobs) since in
such cases, having a job missing its due date is very
costly. Thus, minimization of the number of tardy jobs
should be the primary concern. On the other hand, it is
desirable to minimize the job earliness to minimize the
inventory cost. Early/tardy scheduling problems are
compatible with the concepts of just-in-time production
and supply chain management, which have been adopted
by many organizations. Indeed, these production
strategies view both early and tardy deliveries as
undesirable. By the machine deterioration effect, we mean
that each machine deteriorates at a different rate. This

deterioration is considered in terms of cost that depends
on the production rate, the machine operating
characteristics and the kind of work done by each
machine. Moreover, job-processing times are increasing
functions of their starting times and follow a simple linear
deterioration. Browne and Yechiali (1990) first
introduced it. Since then, deteriorating job scheduling
problems have been widely discussed. Ruat et al. (2008)
considered the problem of scheduling a given number of
jobs on a single machine with time deteriorating job
values and capacity constraints while the objective
function is to maximize total revenue. Gawiejnowicz et al.
(2006) considered a single machine time-dependent
scheduling problem. They introduced two scenarios for a
given sequence of job deterioration and formulated a
greedy polynomial time approximation algorithm for each
scenario.

In recent decades, most of the researches have focused
on Just-In-Time (JIT) scheduling models. For example,
Sridharan and Zhou (1996) considered a single machine
problem with total weighted earliness and tardiness and
developed a solution procedure based on decision theory.
Cai and Zhou (1999) studied a parallel machine stochastic
scheduling problem to minimize expected total cost for

* Corresponding author Email address: hooman.asghari@outlook.com

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

19

objective functions in details. Next, the mathematical
formulation is developed for the problem. In Section 3,
we present a new solution method for it and describ an
approach in order to consider the four objectives as a
single objective. In Section 4, some numerical examples
of its occurrence are applied and the feasibility and
effectiveness of the proposed method are demonstrated by
comparing with the simulated annealing method. Finally,
concluding remarks are given in the last Section.

2. Problem Formulation

The following notations and definitions are used to
describe a multi-objective on parallel machines
scheduling problem that is an extension of studied
problem by Mazdeh et al. (2010).
 This problem considers a set of N independent jobs,
J1,J2,. . . ,Jn, on a number of parallel machines selected
from a set of M potential machines as each of these jobs
exactly need one operation on one machine. Each job Ji
has a processing time ݌෤௝ and a due date ሚ݀௝ that all
processing times and due dates are considered as fuzzy
numbers. Here machines are supposed to become worse at
a different rate by allocating and then doing the jobs on
them. This deterioration is a function of production rate,
machine’s operating characteristics and the kind of work
accomplished by each machine, which considered in
terms of cost.

A job is early if its completion time is smaller than the
common due date. On the other hand a job is tardy if its
processing ends after due date. It is not known in advance
whether a job will be completed before or after the due
date.
 The notations and other assumptions applied in
mathematical formulation are as follows.

2.1. Problem assumptions

The following notations are the assumptions
considered in the present model.

• Each machine is able to process each job;
• The machine can process at most one job at a time;
• No processing is allowed;
• Associated with job j (j=1, … ,n) there are a

processing time ݌෤௝ and a due date ሚ݀௝;
• Job processing time may be different by various

machines;
• Job processing time is described by a function of the

starting time (෨ܲ jm = ajm + ෨ܾj ሚܵjm);
• The growth rate of the processing time (෨ܾ௝) is

independent of machine;
• The jobs are considered independent of each other;

2.2. Sets and indices

The following shows nomenclature used in the model.

Sets
N The set of jobs that must be scheduled
M The set of available machines
i,j ϵ {0,1,…,N} are designated job, where job 0 is a
dummy job and is always at the first position on a
machine
Parameters
γi Earliness weight of job i
βi Tardiness penalty of job i
ri Arrived time of job i to queue
ሚ݀ i Due date of job i
෤ܽ௜௠ Processing fix time of job i on machine m
෨ܾ௜ Growth rate of the processing time of job i
ܿ̃௜௠ Cost of machine deterioration
Decision variables

௜ܺ௝௠ 1, if job j immediately follows job i in
sequence on machine m; 0, otherwise

௜ܻ௠ 1, if job i assigned to machine m; 0,
otherwise

෨ܶ௜ Tardiness value of job i
 ෨௜ Earliness value of job iܧ
෨ܲ௜௠ Processing time of job i on machine m
ሚܵ௜௠ Starting time of job i on machine m
 ሚ௜ Completion time of job iܥ

2.3. Mathematical model

Base on the aforementioned descriptions and indices, a
fuzzy nonlinear programming model is developed as
follows:

Minimize
1ܨ =෍ߛ௜ܧ෨௜

௜∈ே

 (1)

2ܨ =෍ߚ௜ ෨ܶ௜
௜∈ே

 (2)

3ܨ =෍ܥሚ௜ − ௜ݎ
௜∈ே

 (3)

4ܨ =෍ ෍ ௜ܻ௠ . ܿ̃௜௠
௠∈ெ௜∈ே

 (4)

Subject to

෍ܺ଴௜௠
௜∈ே

≤ 1 ∀݉ ∈ (5) ,ܯ

෍ ෍ ௜ܺ௝௠
௠∈ெ௜∈ே,௜ஷ௝

= 1 ∀݆ ∈ ܰ, (6)

෍ ௜ܺ௝௠
௝∈ே,௜ஷ௝

≤ ௜ܻ௠ ∀݅ ∈ ܰ, ∀݉ ∈ (7) ,ܯ

෍ ௜ܺ௝௠
௜∈ே,௜ஷ௝

≤ ௝ܻ௠ ∀݆ ∈ ܰ,∀݉ ∈ (8) ,ܯ

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

21

Fig. 2. α-cut on membership function of triangular fuzzy number ෨ܲ௜௠

According to Fig 2 following equations can be resulted:

ߙ

௜ܲ௠
௅ − ௜ܲ௠

௟ =
1

௜ܲ௠
௠ − ௜ܲ௠

௟ 					

⇒ ൫ߙ					 ௜ܲ௠
௠ − ௜ܲ௠

௟ ൯
= ௜ܲ௠

௅ − ௜ܲ௠
௟

																																																		⇒ 					 ௜ܲ௠
௅

= .ߙ ௜ܲ௠
௠ + (1 − (ߙ ௜ܲ௠

௟

(20)

ߙ

௜ܲ௠
௨ − ௜ܲ௠

௎ =
1

௜ܲ௠
௨ − ௜ܲ௠

௠ 					

⇒)ߙ					 ௜ܲ௠
௨ − ௜ܲ௠

௠)
= ௜ܲ௠

௨ − ௜ܲ௠
௎

																																																		⇒ 					 ௜ܲ௠
௎

= .ߙ ௜ܲ௠
௠ + (1 − (ߙ ௜ܲ௠

௨

(21)

Others like ෨ܲ௜௠ are converted into the interval form
through α-cut on these numbers. However, due date (ሚ݀௜)
defined different with membership function as following
that has been introduced same Hwang and Yoon (1981)
and has been illustrated in Fig 3.

(݀)ௗ෨೔ߤ =

⎩
⎪
⎨

⎪
⎧ 1,																							݀ ≤ ݀௜∗
݀ − ݀௜௠

݀௜∗ − ݀௜௠
, ݀௜∗ ≤ ݀ ≤ ݀௜௠

0,																								݀ ≥ ݀௜௠
 (22)

Fig. 3. Membership function of due date

This number can be converted to the interval form by
applying α-cut as follows:

ሚ݀௜ഀ = [݀௜௅ 	, ݀௜௎] = [0			, .ߙ ݀௜∗ +
(1 − [௜௠݀(ߙ

Interval number (2)

3.2. Conversion to deterministic programming

If we substitute interval numbers in the model, fuzzy
programming is converted to interval programming. Now,
the numbers should be defuzzified. In this paper,
deterministic numbers are obtained via applying convex
conversion. Hence, the interval programming converts
into deterministic programming.
 Follows, interval numbers convert into deterministic
form by applying convex conversion context that present
in Appendix A.

3.3. Solving multi-objective optimization

I use a general form of multi-objective programming
that is a family of Lp-metrics and is adopted from Hwang
& Yoon, (1981). This method considers the minimum
deviation from the ideal solution as follows:

Min f1(x), f2(x), …, fn(x)
S.t: x ϵ X (23)

That f1(x), f2(x), …,fn(x) are the objective functions and

x is the feasible region. First, an ideal solution for each
objective function separately will be obtained by
following problems solving:

fi*=Min fi(x) (i=1, …,n)
S.t: x ϵ X (24)

Then, will be obtained without unit function with

dividing the each function in its optimum value. Thus,
multi-objective programming problem can satisfactorily
solve by following new objective function:

Min ൥෍ ௜߱
௣ ቆ ௜݂(ݔ) − ௜݂

ି

௜݂
ା − ௜݂

ି ቇ
௣

௜

൩

భ
೛

											S. t:																ݔ ∈ ܺ

(25)

Where each function is weighted using ‘‘ω’’ to denote

the importance of objective functions. This weight
adjustment is used for alimenting and balancing between
functions that will be determined by decision makers just
as following relationship can be established.
෍߱௜
௜

= 1

߱௜ ≥ 0										݅ ∈ (1, … , ݊)
 (26)

Obviously, the result is dependent on the value of p.

Generally, p is 1 or 2. However, other values of p also can
be used.

௜ܲ௠
௟ ௜ܲ௠

௠ ௜ܲ௠
௨ ௜ܲ௠

1

 (ܲ)௉೔೘ߤ

௜ܲ௠
௎ ௜ܲ௠

௅

α

 ௗ෨೔(d)ߤ

݀௜
∗ ݀௜

௠

1

݀௜

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

23

4.2. Simulated annealing

In this paper, for comparison, simulated annealing
(SA) (Davis 1987; Kirkpatrick et al. 1983) is adopted as
an another search method for the problem. Here, observe
that SA searches for solutions by exchanging the job
processing order for each machine.

The algorithm of SA used in this paper is summarized
as follows.

Step 1. Generate one solution (schedule) through the
random selection in Step 4 of an active scheduling
generating algorithm and denote it by Xc. Set an initial
temperature T0.

Step 2. Represent the job process sequence for each
machine of a solution Xc

 by the corresponding matrix, and
select one machine at random. Select two jobs of the
machine and exchange them. For example in the problem
of 3 jobs and 3 machines, when the first job (J3) and the
second job (J1) of machine 3 (M3) are selected and the
result after exchange becomes as shown in Fig 5.

ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଷܬ ଵܬ ଶܬ

ቍ	⇒ 	
ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଵܬ ଷܬ ଶܬ

ቍ

Fig. 5. Example of job processing order and job exchange
Step 3. Based on the job processing sequence after job
exchange, dissolve the conflict occurred in Step 4 of an
active scheduling generating algorithm, and generate a
new solution. If the obtained solution is different from the
solution before job exchange, set the solution as a
neighborhood solution X and go to Step 4. Otherwise,
return to Step 2, and select a new exchange pair.

Step 4. If the objective function value of the solution
through exchange is improved, accept the exchange, and
set Xc = X. Otherwise, determine the acceptance by the
following substeps.
1. Using the decrement Δf of the objective function

value and temperature T, calculate exp (-Δf / T).
2. Generate a uniform random number on the open

interval (0, 1) and compare it with the value of exp (-
Δf / T).

3. If the value of exp (-Δf / T) is greater than the random
number, accept the exchange, and set Xc = X.
Otherwise, the exchange is not accepted.

When the exchange is accepted, go to Step 5. Otherwise,
return to Step 2 to find the next exchange pair.

Step 5. The equilibrium state test is performed by
checking whether the change of the objective function
value obtained through the exchanges in the prescribed
number of times is small enough or not. The number for
the equilibrium state test is called the epoch. Here, the test
is performed in the following substeps.
1. Repeat the procedures from Step 2 to Step 4, until the

exchanges are performed by the number of epoch.

When reached the epoch number, perform the
following substeps (2)-(4).

2. Calculate the average value ݂௘̅ of the objective
function values during the current epoch and the
average value ݂௘̅ᇱ of the objective function values
through the exchanges thus far.

3. Check whether the relative error between the average
value ݂௘̅ᇱ in the whole and the average value ݂௘̅ during
the epoch is smaller than the prescribed tolerance
value ߝ or not, i.e., check whether ൫ห݂௘̅ − ݂௘̅ᇱห/݂௘̅ᇱ൯ < ߝ
holds or not.

4. When the relative error is smaller than the tolerance
value, regard the equilibrium state is reached at this
temperature, and go to Step 6 to decrease the
temperature. Otherwise, clear the counter of the
epoch, and return to Step 2 to repeat the job exchange
process.

Step 6. Starting with an initial temperature T0, decrease
the temperature with the predetermined ratio α, i.e., Tnew =
α × Told.

Step 7. If the number of the pair exchanges reaches the
predetermined number, stop the algorithm.

Repeating this process, when the algorithm is
terminated, select the solution with the best objective
function value among the obtained solutions.

5. Numerical Example

According to our observations, there is no comparable
mathematical model in the literature to compare with the
proposed model. So, first a small test problem has been
solved only to investigate behavior of proposed
mathematical model. Tables 1, 2 and 3 summarize the
data used for two numerical examples with 10 jobs.

Here, the behavior of the proposed fuzzy model is
appraised for different α (α ϵ [0, 1]) through two solving
methods. In Table 4, the model has been solved by the
Lingo 13.0 solver and its computational times compared
with the GA. The experiments were run in an Intel(R)
core(TM) i3 CPU, at 2.13GHz and with 4.00 GB of RAM
memory.

To solve the example problem, gave the common data
of due dates, fixed part of the processing times and
deteriorating cost. In our experiments, the population size
is 30 and the new individuals are created with a crossover
rate of 0.45. The termination criterion is the completion of
30 generations of individuals. The problem is solved for p
= 1 and the importance weight of objective functions are
determined as α1=0.27, α2=0.23, α3=0.29 and α4=0.21.

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

25

Fig. 6. Gantt chart for α = 0.2

Table 5
Test problems’ dimensions.

Problem number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The number of jobs N 10 15 20 25 30 40 50 70 100 150 200 300 400 500
The number of machines M 4 5 10 10 15 20 25 30 40 50 70 100 150 200

Table 6
The values of the parameters used in the test problems

Parameter Symbol Range
Earliness weight γi ~ uni[1,3]*

Tardiness penalty βi ~ uni[1,3]
Processing fix time ෤ܽ௜௠ ~ uni[0,60]
Processing variable time ෨ܾ௜ ~ uni[0,1]
Arrived time ri ~ uni[0,100]
Due date ሚ݀i ~ uni[100.200]
Deteriorating cost ܿ̃௜௠ ~ uni[0,15]
* Uniform distribution [lower bound, upper bound]

In Table 7, the evaluation results have been

summarized through different α values (α ϵ {0.2, 0.5 and
1}), according to a group of parameters defined in Table
6. The parameter values of SA are set as 0.5, 0.9, 10’000,
5 and 0.2 that denote the initial temperature (T0), the
changing ratio (α), the number of search (S), the number
of epoch and the tolerance value (ߝ), respectively. Here,
an initial temperature is set to be 277 for the last instance
when solving the problems which minimize the objective
function using SA.

It should be emphasized here that these parameter
values are found through a lot of experiences and these
values are used in all of the trials of GA and SA. All of
the trials of GA and SA are performed 10 times for each
of the problems. The average times required for
computation are respectively shown in Table 7.

15

20

J8

71.63

87.56

13.4

121.23

127.69

131.17

199.22

183.93

158.83 277.76

0 50 100 150 200 250 300

M1

M2

M3

Time

M
ac

hi
ne

J7 J9 J1

J3 J6 J10

J4 J2 J5

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

27

and the results were compared by two heuristic methods,
genetic algorithm and simulating annulling, for different
illustrative examples to analyze and validate the approach.
Computational results confirmed efficiency and
effectiveness of the developed heuristic solution methods
when time complexity is addressed.

Recent research has raised several issues that could be
further investigated. For example, the accuracy and
efficiency of the proposed method could be improved. A
number of verification and validation methods may be
helpful in testing the accuracy and consistency of the
process.

References

Anglani A, Grieco A, Guerriero E, Musmanno R (2005) Robust
scheduling of parallel machines with sequence-dependent
set-up costs. European Journal of Operational Research
161:704-720.

Balin S (2011) Parallel machine scheduling with fuzzy
processing times using a robust genetic algorithm and
simulation. Information Sciences 181:3551-3569.

Bilge Ü, Kıraç F, Kurtulan M, Pekgün P (2004) A tabu search
algorithm for parallel machine total tardiness problem.
Computers & Operations Research 31:397-414.

Browne S, Yechiali U (1990) Scheduling Deteriorating Jobs on
a Single Processor. Operations Research 38:495-498.

Cai X, Zhou S (1999) Stochastic scheduling on parallel
machines subject to random breakdowns to minimize
expected costs for earliness and tardy jobs. Operations
Research 47:422-437.

Cao D, Chen M, Wan G (2005) Parallel machine selection and
job scheduling to minimize machine cost and job
tardiness. Computers & Operations Research 32:1995-
2012.

Davis L (1987) Genetic Algorithms and Simulated Annealing.
Morgan Kaufmann (ed), Los Altos, CA.

Falkenauer E (1999) The worth of uniform crossover. In:
Proceedings of the 1999 Congress on Evolutionary
Computation CEC99, USA.

Gawiejnowicz S, Kurc W, Pankowska L (2006) Analysis of a
time-dependent scheduling problem by signatures of
deterioration rate sequences. Discrete Applied
Mathematics 154:2150-2166.

Guner E, Erol S, Tani K (1998) One machine scheduling to
minimize the maximum earliness with minimum number
of tardy jobs. International Journal of Production
Economics, 55:213-219.

Han S, Ishii H, Fujii S (1994) One machine scheduling problem
with fuzzy due date. European Journal of Operational
Research 79:1-12.

Holland JH (1975) Adaptation in Natural and Artificial Systems.
Arbor A (ed) The University of Michigan Press, MI.

Hong TP, Chuang TN (1999) A new triangular fuzzy Johnson
algorithm. Computers & Industrial Engineering 36:179-
200.

Hwang CL, Yoon K (1981) Multiple attribute decision making:
Methods and applications. Springer-Verlag, Berlin and
New York.

Ishibuchi H, Murata T (2000) Flow shop scheduling with fuzzy
due date and fuzzy processing time. In: Slowinski R,
Hapke M (ed) Scheduling under Fuzziness.

Ishii H, Tada M, (1995) Single machine scheduling problem
with fuzzy precedence relation. European Journal of
Operational Research 87:284-288.

Itoh T, Ishii H (1999) Fuzzy due-date scheduling problem with
fuzzy processing time. International Transactions in
Operational Research 6:639-647.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220:671-680.

Konno T, Ishii H (2000) An open shop scheduling problem with
fuzzy allowable time and fuzzy resource constraint. Fuzzy
Sets and Systems 109:141-147.

Kuroda M, Wang Z (1996) Fuzzy job shop scheduling.
International Journal of Production Economics 44:45-51.

Leu YY, Matheson LA, Rees LP (1994) Assembly line
balancing using genetic algorithms with heuristic
generated initial populations and multiple criteria.
Decision Sciences 15:581–606.

Litoiu M, Tadei R (2001) Real-time task scheduling with fuzzy
deadlines and processing times. Fuzzy Sets and Systems
117:35-45.

Mazdeh MM, Zaerpour F, Zareei A, Hajinezhad A (2010)
Parallel machines scheduling to minimize job tardiness
and machine deteriorating cost with deteriorating jobs.
Applied Mathematical Modeling 34:1498-1510.

Mazzini R, Armentano VA (2001) A heuristic for single
machine scheduling with early and tardy costs. European
Journal of Operational Research 128:129-146.

McKay K, Pinedo M, Webster S (2002) Practice-focused
research issues for scheduling systems. Production and
Operations Management 11:249-258.

Oguz C, Ercan MF (2005) A genetic algorithm for hybrid flow-
shop scheduling with multiprocessor tasks. J Scheduling
8:323-351.

Page J, Poli P, Langdon WB (1999) Smooth uniform crossover
with smooth point mutation in genetic programming: a
preliminary study. In: Genetic Programming, Proceedings
of EuroGP’99, Sweden.

Peng J, Liu B (2004) Parallel machine scheduling models with
fuzzy processing times. Information Sciences 166:49-66.

Pfund M, Fowler JW, Gadkari A, Chen Y (2008) Scheduling
jobs on parallel machines with setup times and ready
times. Computers & Industrial Engineering 54:764-782.

Piersma N, Romeijn HE (1996) Parallel machine scheduling: A
probabilistic analysis. Naval Research Logistics (NRL)
43:897-916.

Prade H (1979) Using fuzzy set theory in a scheduling problem:
A case study. Fuzzy Sets and Systems 2:153-165.

Radhakrishnan S, Ventura JA (2000) Simulated annealing for
parallel machine scheduling with earliness-tardiness
penalties and sequence-dependent set-up times.
International Journal of Production Research 38:2233-
2252.

Raut S, Gupta JND, Swami S (2008) Single machine scheduling
with time deteriorating job values. Journal of the
Operational Research Society 59:105-118.

Sridharan V, Zhou Z (1996) A decision theory based scheduling
procedure for single machine weighted earliness and
tardiness problems. European Journal of Operational
Research 94:292-301.

Syswerda G (1989) Uniform crossover in genetic algorithms In:
Schaffer DJ (ed) Proceedings of the 3rd International
Conference on Genetic Algorithms, USA, pp. 2-9.

Wan G, Yen BPC (2002) Tabu search for single machine
scheduling with distinct due windows and weighted

Journal of Optimization in Industrial Engineering 20 (2016) 19-30

29

