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Abstract 

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager 
encounters; this is why in recent decades extensive researches have been done on scheduling issues. A type of scheduling problems is just-
in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for appraising a 
multi-objective programing that minimize total weighted tardiness, earliness and total flow time with fuzzy parameters on parallel 
machines, simultaneously with respect to the impact of machine deterioration. Besides, in this paper, attempts are made to present a 
defuzzification approach and a heuristic method based genetic algorithm (GA) to solve the proposed model. Finally, several dominance 
properties of optimal solutions are demonstrated in comparison with the results of a state-of-the-art commercial solver and the simulated 
annealing method that is followed by illustrating some instances for indicating validity and efficiency of the method. 
Keywords: Mathematical optimization, Fuzzy multi-objective model, Parallel machines scheduling, Weighted tardiness/earliness, Genetic 
algorithm. 

1. Introduction 

In classical scheduling problems, the processing time 
of job has been assumed constant. However, there are 
many situations that this time may be subject to change 
due to deterioration and/or learning phenomena (McKay 
et al. 2002). 

Scheduling with costs of earliness and tardiness has 
received considerable and increasing attention in recent 
researches. In many practical situations, it is required to 
guarantee that as many jobs as possible to meet their due 
dates (i.e., to minimize the number of tardy jobs) since in 
such cases, having a job missing its due date is very 
costly. Thus, minimization of the number of tardy jobs 
should be the primary concern. On the other hand, it is 
desirable to minimize the job earliness to minimize the 
inventory cost. Early/tardy scheduling problems are 
compatible with the concepts of just-in-time production 
and supply chain management, which have been adopted 
by many organizations. Indeed, these production 
strategies view both early and tardy deliveries as 
undesirable. By the machine deterioration effect, we mean 
that each machine deteriorates at a different rate. This  

 
 
 

 
 
 
 
deterioration is considered in terms of cost that depends 
on the production rate, the machine operating 
characteristics and the kind of work done by each 
machine. Moreover, job-processing times are increasing 
functions of their starting times and follow a simple linear 
deterioration. Browne and Yechiali (1990) first 
introduced it. Since then, deteriorating job scheduling 
problems have been widely discussed. Ruat et al. (2008) 
considered the problem of scheduling a given number of 
jobs on a single machine with time deteriorating job 
values and capacity constraints while the objective 
function is to maximize total revenue. Gawiejnowicz et al. 
(2006) considered a single machine time-dependent 
scheduling problem. They introduced two scenarios for a 
given sequence of job deterioration and formulated a 
greedy polynomial time approximation algorithm for each 
scenario. 

In recent decades, most of the researches have focused 
on Just-In-Time (JIT) scheduling models. For example, 
Sridharan and Zhou (1996) considered a single machine 
problem with total weighted earliness and tardiness and 
developed a solution procedure based on decision theory. 
Cai and Zhou (1999) studied a parallel machine stochastic 
scheduling problem to minimize expected total cost for 
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objective functions in details. Next, the mathematical 
formulation is developed for the problem. In Section 3, 
we present a new solution method for it and describ an 
approach in order to consider the four objectives as a 
single objective. In Section 4, some numerical examples 
of its occurrence are applied and the feasibility and 
effectiveness of the proposed method are demonstrated by 
comparing with the simulated annealing method. Finally, 
concluding remarks are given in the last Section. 

2. Problem Formulation 

The following notations and definitions are used to 
describe a multi-objective on parallel machines 
scheduling problem that is an extension of studied 
problem by Mazdeh et al. (2010). 
     This problem considers a set of N independent jobs, 
J1,J2,. . . ,Jn, on a number of parallel machines selected 
from a set of M potential machines as each of these jobs 
exactly need one operation on one machine. Each job Ji 
has a processing time ݌෤௝  and a due date ሚ݀௝  that all 
processing times and due dates are considered as fuzzy 
numbers. Here machines are supposed to become worse at 
a different rate by allocating and then doing the jobs on 
them. This deterioration is a function of production rate, 
machine’s operating characteristics and the kind of work 
accomplished by each machine, which considered in 
terms of cost. 

A job is early if its completion time is smaller than the 
common due date. On the other hand a job is tardy if its 
processing ends after due date. It is not known in advance 
whether a job will be completed before or after the due 
date. 
     The notations and other assumptions applied in 
mathematical formulation are as follows. 

2.1. Problem assumptions 

The following notations are the assumptions 
considered in the present model. 

• Each machine is able to process each job; 
• The machine can process at most one job at a time; 
• No processing is allowed; 
• Associated with job j (j=1, … ,n) there are a 

processing time ݌෤௝  and a due date ሚ݀௝; 
• Job processing time may be different by various 

machines; 
• Job processing time is described by a function of the 

starting time ( ෨ܲ jm = ajm + ෨ܾj ሚܵjm); 
• The growth rate of the processing time ( ෨ܾ௝ ) is 

independent of machine; 
• The jobs are considered independent of each other; 

2.2. Sets and indices 

The following shows nomenclature used in the model.

Sets 
N The set of jobs that must be scheduled 
M The set of available machines  
i,j ϵ {0,1,…,N} are designated job, where job 0 is a 
dummy job and is always at the first position on a 
machine 
Parameters 
γi Earliness weight of job i 
βi Tardiness penalty of job i 
ri Arrived time of job i to queue 
ሚ݀ i Due date of job i 
෤ܽ௜௠ Processing fix time of job i on machine m 
෨ܾ௜ Growth rate of the processing time of job i  
ܿ̃௜௠ Cost of machine deterioration  
Decision variables 

௜ܺ௝௠ 1, if job j immediately follows job i in 
sequence on machine m; 0, otherwise 

௜ܻ௠ 1, if job i assigned to machine m; 0, 
otherwise 

෨ܶ௜ Tardiness value of job i 
 ෨௜ Earliness value of job iܧ
෨ܲ௜௠ Processing time of job i on machine m 
ሚܵ௜௠ Starting time of job i on machine m 
 ሚ௜ Completion time of job iܥ

 

2.3. Mathematical model 

Base on the aforementioned descriptions and indices, a 
fuzzy nonlinear programming model is developed as 
follows: 
 

Minimize  
1ܨ =෍ߛ௜ܧ෨௜

௜∈ே

 (1) 

2ܨ =෍ߚ௜ ෨ܶ௜
௜∈ே

 (2) 

3ܨ =෍ܥሚ௜ − ௜ݎ
௜∈ே

 (3) 

4ܨ =෍ ෍ ௜ܻ௠ . ܿ̃௜௠
௠∈ெ௜∈ே

 (4) 

Subject to  

෍ܺ଴௜௠
௜∈ே

≤ 1 ∀݉ ∈  (5) ,ܯ

෍ ෍ ௜ܺ௝௠
௠∈ெ௜∈ே,௜ஷ௝

= 1 ∀݆ ∈ ܰ, (6) 

෍ ௜ܺ௝௠
௝∈ே,௜ஷ௝

≤ ௜ܻ௠ ∀݅ ∈ ܰ, ∀݉ ∈  (7) ,ܯ

෍ ௜ܺ௝௠
௜∈ே,௜ஷ௝

≤ ௝ܻ௠ ∀݆ ∈ ܰ,∀݉ ∈  (8) ,ܯ
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Fig. 2. α-cut on membership function of triangular fuzzy number ෨ܲ௜௠  

 
According to Fig 2 following equations can be resulted: 
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Others like ෨ܲ௜௠  are converted into the interval form 
through α-cut on these numbers. However, due date ( ሚ݀௜) 
defined different with membership function as following 
that has been introduced same Hwang and Yoon (1981) 
and has been illustrated in Fig 3. 
 

(݀)ௗ෨೔ߤ =

⎩
⎪
⎨

⎪
⎧ 1,																							݀ ≤ ݀௜∗
݀ − ݀௜௠

݀௜∗ − ݀௜௠
, ݀௜∗ ≤ ݀ ≤ ݀௜௠

0,																								݀ ≥ ݀௜௠
 (22) 

 
Fig. 3. Membership function of due date 

 
This number can be converted to the interval form by 
applying α-cut as follows: 

 
ሚ݀௜ഀ = [݀௜௅ 	, ݀௜௎] = [0			, .ߙ ݀௜∗ +
(1 −   [௜௠݀(ߙ

Interval number (2) 

3.2. Conversion to deterministic programming 

If we substitute interval numbers in the model, fuzzy 
programming is converted to interval programming. Now, 
the numbers should be defuzzified. In this paper, 
deterministic numbers are obtained via applying convex 
conversion. Hence, the interval programming converts 
into deterministic programming.  
     Follows, interval numbers convert into deterministic 
form by applying convex conversion context that present 
in Appendix A. 

3.3. Solving multi-objective optimization 

I use a general form of multi-objective programming 
that is a family of Lp-metrics and is adopted from Hwang 
& Yoon, (1981). This method considers the minimum 
deviation from the ideal solution as follows: 
 

Min   f1(x), f2(x), …, fn(x) 
S.t: x ϵ X (23) 

 
That f1(x), f2(x), …,fn(x) are the objective functions and 

x is the feasible region. First, an ideal solution for each 
objective function separately will be obtained by 
following problems solving:  
 

fi*=Min fi(x)  (i=1, …,n) 
S.t:   x ϵ X (24) 

 
Then, will be obtained without unit function with 

dividing the each function in its optimum value. Thus, 
multi-objective programming problem can satisfactorily 
solve by following new objective function: 
 

Min ൥෍ ௜߱
௣ ቆ ௜݂(ݔ) − ௜݂

ି

௜݂
ା − ௜݂

ି ቇ
௣

௜

൩

భ
೛

 

											S. t:																ݔ ∈ ܺ 

(25) 

 
Where each function is weighted using ‘‘ω’’ to denote 

the importance of objective functions. This weight 
adjustment is used for alimenting and balancing between 
functions that will be determined by decision makers just 
as following relationship can be established. 
෍߱௜
௜

= 1 

߱௜ ≥ 0										݅ ∈ (1, … , ݊) 
 (26) 

 
Obviously, the result is dependent on the value of p. 

Generally, p is 1 or 2. However, other values of p also can 
be used. 

௜ܲ௠
௟  ௜ܲ௠

௠  ௜ܲ௠
௨  ௜ܲ௠ 

1 

 (ܲ)௉೔೘ߤ

௜ܲ௠
௎  ௜ܲ௠

௅  

α 

 ௗ෨೔(d)ߤ

݀௜
∗ ݀௜

௠ 

1 

݀௜ 
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4.2. Simulated annealing 
 

In this paper, for comparison, simulated annealing 
(SA) (Davis 1987; Kirkpatrick et al. 1983) is adopted as 
an another search method for the problem. Here, observe 
that SA searches for solutions by exchanging the job 
processing order for each machine. 

The algorithm of SA used in this paper is summarized 
as follows. 
 
Step 1. Generate one solution (schedule) through the 
random selection in Step 4 of an active scheduling 
generating algorithm and denote it by Xc. Set an initial 
temperature T0. 
 
Step 2. Represent the job process sequence for each 
machine of a solution Xc

 by the corresponding matrix, and 
select one machine at random. Select two jobs of the 
machine and exchange them. For example in the problem 
of 3 jobs and 3 machines, when the first job (J3) and the 
second job (J1) of machine 3 (M3) are selected and the 
result after exchange becomes as shown in Fig 5. 
 

ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଷܬ ଵܬ ଶܬ

ቍ	⇒ 	
ଵܯ
ଶܯ
ଷܯ

ቌ
ଵܬ ଶܬ ଷܬ
ଶܬ ଵܬ ଷܬ
ଵܬ ଷܬ ଶܬ

ቍ 

Fig. 5. Example of job processing order and job exchange 
Step 3. Based on the job processing sequence after job 
exchange, dissolve the conflict occurred in Step 4 of an 
active scheduling generating algorithm, and generate a 
new solution. If the obtained solution is different from the 
solution before job exchange, set the solution as a 
neighborhood solution X and go to Step 4. Otherwise, 
return to Step 2, and select a new exchange pair. 
 
Step 4. If the objective function value of the solution 
through exchange is improved, accept the exchange, and 
set Xc = X. Otherwise, determine the acceptance by the 
following substeps.  
1. Using the decrement Δf of the objective function 

value and temperature T, calculate exp (-Δf / T). 
2. Generate a uniform random number on the open 

interval (0, 1) and compare it with the value of exp (-
Δf / T). 

3. If the value of exp (-Δf / T) is greater than the random 
number, accept the exchange, and set Xc = X. 
Otherwise, the exchange is not accepted. 

When the exchange is accepted, go to Step 5. Otherwise, 
return to Step 2 to find the next exchange pair. 
 
Step 5. The equilibrium state test is performed by 
checking whether the change of the objective function 
value obtained through the exchanges in the prescribed 
number of times is small enough or not. The number for 
the equilibrium state test is called the epoch. Here, the test 
is performed in the following substeps. 
1. Repeat the procedures from Step 2 to Step 4, until the 

exchanges are performed by the number of epoch. 

When reached the epoch number, perform the 
following substeps (2)-(4). 

2. Calculate the average value ݂௘̅  of the objective 
function values during the current epoch and the 
average value ݂௘̅ᇱ  of the objective function values 
through the exchanges thus far. 

3. Check whether the relative error between the average 
value ݂௘̅ᇱ  in the whole and the average value ݂௘̅ during 
the epoch is smaller than the prescribed tolerance 
value ߝ or not, i.e., check whether ൫ห݂௘̅ − ݂௘̅ᇱห/݂௘̅ᇱ൯ <  ߝ
holds or not. 

4. When the relative error is smaller than the tolerance 
value, regard the equilibrium state is reached at this 
temperature, and go to Step 6 to decrease the 
temperature. Otherwise, clear the counter of the 
epoch, and return to Step 2 to repeat the job exchange 
process. 

 
Step 6. Starting with an initial temperature T0, decrease 
the temperature with the predetermined ratio α, i.e., Tnew = 
α × Told. 
 
Step 7. If the number of the pair exchanges reaches the 
predetermined number, stop the algorithm. 
 

Repeating this process, when the algorithm is 
terminated, select the solution with the best objective 
function value among the obtained solutions. 

5. Numerical Example 

According to our observations, there is no comparable 
mathematical model in the literature to compare with the 
proposed model. So, first a small test problem has been 
solved only to investigate behavior of proposed 
mathematical model. Tables 1, 2 and 3 summarize the 
data used for two numerical examples with 10 jobs. 

Here, the behavior of the proposed fuzzy model is 
appraised for different α (α ϵ [0, 1]) through two solving 
methods. In Table 4, the model has been solved by the 
Lingo 13.0 solver and its computational times compared 
with the GA. The experiments were run in an Intel(R) 
core(TM) i3 CPU, at 2.13GHz and with 4.00 GB of RAM 
memory.  

To solve the example problem, gave the common data 
of due dates, fixed part of the processing times and 
deteriorating cost. In our experiments, the population size 
is 30 and the new individuals are created with a crossover 
rate of 0.45. The termination criterion is the completion of 
30 generations of individuals. The problem is solved for p 
= 1 and the importance weight of objective functions are 
determined as α1=0.27, α2=0.23, α3=0.29 and α4=0.21. 
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Fig. 6. Gantt chart for α = 0.2 

 
Table 5 
Test problems’ dimensions. 

Problem number  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

The number of jobs N 10 15 20 25 30 40 50 70 100 150 200 300 400 500 
The number of machines M 4 5 10 10 15 20 25 30 40 50 70 100 150 200 

 
Table 6 
The values of the parameters used in the test problems 

Parameter Symbol Range 
Earliness weight γi ~ uni[1,3]* 

Tardiness penalty βi ~ uni[1,3] 
Processing fix time ෤ܽ௜௠ ~ uni[0,60] 
Processing variable time ෨ܾ௜ ~ uni[0,1] 
Arrived time ri ~ uni[0,100] 
Due date ሚ݀i ~ uni[100.200] 
Deteriorating cost ܿ̃௜௠ ~ uni[0,15] 
* Uniform distribution [lower bound, upper bound] 

 
In Table 7, the evaluation results have been 

summarized through different α values (α ϵ {0.2, 0.5 and 
1}), according to a group of parameters defined in Table 
6. The parameter values of SA are set as 0.5, 0.9, 10’000, 
5 and 0.2 that denote the initial temperature (T0), the 
changing ratio (α), the number of search (S), the number 
of epoch and the tolerance value (ߝ), respectively. Here, 
an initial temperature is set to be 277 for the last instance 
when solving the problems which minimize the objective 
function using SA. 

It should be emphasized here that these parameter 
values are found through a lot of experiences and these 
values are used in all of the trials of GA and SA. All of 
the trials of GA and SA are performed 10 times for each 
of the problems. The average times required for 
computation are respectively shown in Table 7. 
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and the results were compared by two heuristic methods, 
genetic algorithm and simulating annulling, for different 
illustrative examples to analyze and validate the approach. 
Computational results confirmed efficiency and 
effectiveness of the developed heuristic solution methods 
when time complexity is addressed. 

Recent research has raised several issues that could be 
further investigated. For example, the accuracy and 
efficiency of the proposed method could be improved. A 
number of verification and validation methods may be 
helpful in testing the accuracy and consistency of the 
process. 
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